Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
World J Gastroenterol ; 30(11): 1497-1523, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38617454

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is a malignant epithelial tumor, characterized by squamous cell differentiation, it is the sixth leading cause of cancer-related deaths globally. The increased mortality rate of ESCC patients is predominantly due to the advanced stage of the disease when discovered, coupled with higher risk of metastasis, which is an exceedingly malignant characteristic of cancer, frequently leading to a high mortality rate. Unfortunately, there is currently no specific and effective marker to predict and treat metastasis in ESCC. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules, approximately 22 nucleotides in length. miRNAs are vital in modulating gene expression and serve pivotal regulatory roles in the occurrence, progression, and prognosis of cancer. Here, we have examined the literature to highlight the intimate correlations between miRNAs and ESCC metastasis, and show that ESCC metastasis is predominantly regulated or regulated by genetic and epigenetic factors. This review proposes a potential role for miRNAs as diagnostic and therapeutic biomarkers for metastasis in ESCC metastasis, with the ultimate aim of reducing the mortality rate among patients with ESCC.


Subject(s)
Carcinoma , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , MicroRNAs , Humans , MicroRNAs/genetics , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Neoplasms/genetics , Epigenomics
2.
Ying Yong Sheng Tai Xue Bao ; 32(4): 1298-1306, 2021 Apr.
Article in Chinese | MEDLINE | ID: mdl-33899398

ABSTRACT

To clarify the effects of row spacing and sowing rate on the vertical distribution of canopy PAR, biomass, and grain yield in winter wheat, a field experiment was conducted without increa-sing water and fertilizer input. There were two row spacing modes, R1 (equal spacing, 20 cm+20 cm) and R2(wide and narrow row spacing, 12 cm+12 cm+12 cm+24 cm), and three sowing rates, D1 (low, 120 kg·hm-2), D2 (medium, 157.5 kg·hm-2), D3 (high, 195 kg·hm-2). The canopy photosynthetically active radiation (PAR) interception and utilization rate in different heights, population photosynthetic capacity, biomass, and grain yield were measured during the main growth stages of winter wheat. The results showed that both total PAR interception and upper layer PAR interception of winter wheat canopy under R1 treatment were significantly higher than those in R2 treatment, but those of the middle layer and lower layer were higher in R2 than in R1, and with significant difference in the middle layer. From flowering to maturity, the photosynthetic potential (LAD), population photosynthetic rate (CAP), PAR conversion rate, and utilization rate in R2 were all significantly higher than those in R1 under the same sowing rate, with the highest value under R2D2 treatment. With the increasing sowing rate, the population biomass (BA) and leaf biomass (BL) at different layers increased, but the individual biomass (BP) showed an opposite trend. Under the same sowing rate, BA, BL and BP in R2 were higher than that in R1 after the flowering stage. Among them, BA and BP had significant difference in row spacing treatments at the maturity stage, with significant difference between the two row spacing treatments being observed in BL of the middle and lower layers under D2 and D3 sowing rates. The spike number, grain number per spike, 1000-kernel weight, and grain yield of winter wheat among different treatments were the highest in R2D3, R2D1, R2D1, and R2D2, respectively. The 1000-kernel weight, grain number per spike and grain yield in R2 treatment were significantly higher than R1. In summary, the PAR interception in the middle and lower layers of winter wheat canopy was improved by changing row spacing, with positive consequence on the photosynthetic capacity of individual plant and population, PAR utilization and transformation efficiency, which finally increased biomass and grain yield. Therefore, optimizing the field structure and shaping the ideal population photosynthetic structure should pay more attention during the high-yield cultivation of winter wheat. Making full use of light resources per unit land area and excavating the photosynthetic production potential of crops were also critical to achieve high yield and efficiency. In this experiment, the population photosynthetic capacity, photosynthetic effective radiation utilization rate, and yield were the highest under the treatment of R2D2.


Subject(s)
Edible Grain , Triticum , Biomass , Fertilizers , Photosynthesis , Water
3.
Mol Clin Oncol ; 1(2): 395-399, 2013 Mar.
Article in English | MEDLINE | ID: mdl-24649182

ABSTRACT

Chinese herbs are potential sources of antitumor drugs with immunoregulatory activity and few adverse effects. In the present study, we investigated whether the Hypericum japonicum Thunb. (HJT) extract enhanced the efficacy of 5-fluorouracil (5-FU) treatment in murine liver tumor xenografts and reduced toxicity of chemotherapy in hepatoma H22-bearing mice. Tumor weight and inhibition rate, thymus and spleen indices, as well as white blood cell (WBC) count were calculated. The phagocytic function of macrophages was assessed by observing peritoneal macrophages phagocytized chicken red blood cells (RBC). Body weight and toxic reactions of the chemotherapeutic and life prolongation rate were investigated in the mice. Results demonstrated that the HJT extract significantly enhanced the tumor inhibition rate of 5-FU, improved the immune function, reduced the toxic effects and prolonged the survival time in the tumor-bearing mice. Taken together, these results indicated that the HJT extract has a synergistic tumor-inhibiting effect with 5-FU, is able to reduce the toxic side effects and is likely to be safe and efficacious for use in antitumor therapy.

4.
Mol Biol (Mosk) ; 43(6): 1006-15, 2009.
Article in Russian | MEDLINE | ID: mdl-20088376

ABSTRACT

Analysis of genetic diversity in maize populations is a very important step for understanding genetic structure and subsequently for genetic manipulations in maize breeding. Sh2, Bt2, Sh1, Wx1, Ae1 and Su1 involved in starch biosynthesis are important genes associated with yield and quality traits in maize breeding programs. In this study, genetic diversity of these six genes in 67 Chinese elite maize inbred lines was measured using single-nucleotide amplified polymorphisms (SNAPs). The results indicated that the number of haplotypes of each gene and population was far less than theoretically expected 2(n) (n = the number of the SNAPs). Phenetic clustering analysis showed that the kernel phonetic (semi-) dent and (semi-) flint lines were belong to distinct subclusters based on haplotypes of SNAPs, with a few exceptions. In addition, the genetic origin of these maize inbred lines was associated with the clustered subgroups. Intragenic linkage disequilibrium (LD) was observed in some of the SNAPs in Bt2, Sh1 and Ae1, while intergenic LD was observed in some of the SNAPs in Bt2, Sh1 and Su1. Association study of kernel phenotypes and SNAP haplotypes showed that the (semi-) dent and (semi-) flint lines had the common haplotype of TA and CC at two SNAP sites in Bt2 (Bt2-2 and Bt2-5), respectively. Two haplotypes of ATGT and GTGC at four SNAP sites in Sh1 (Sh1-2, Sh1-3, Sh1-4 and Sh1-5) were associated with temperature and tropical origin of the maize inbred lines, respectively.


Subject(s)
Genes, Plant/physiology , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Quantitative Trait Loci/physiology , Starch/genetics , Zea mays/genetics , China , Starch/biosynthesis , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...